首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1091篇
  免费   175篇
  国内免费   502篇
测绘学   1篇
地球物理   99篇
地质学   1601篇
海洋学   14篇
天文学   1篇
综合类   14篇
自然地理   38篇
  2024年   6篇
  2023年   27篇
  2022年   57篇
  2021年   65篇
  2020年   70篇
  2019年   96篇
  2018年   88篇
  2017年   88篇
  2016年   72篇
  2015年   72篇
  2014年   61篇
  2013年   159篇
  2012年   112篇
  2011年   50篇
  2010年   55篇
  2009年   62篇
  2008年   75篇
  2007年   58篇
  2006年   58篇
  2005年   49篇
  2004年   75篇
  2003年   44篇
  2002年   26篇
  2001年   24篇
  2000年   32篇
  1999年   19篇
  1998年   26篇
  1997年   35篇
  1996年   21篇
  1995年   11篇
  1994年   23篇
  1993年   16篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   7篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有1768条查询结果,搜索用时 239 毫秒
61.
Ultrahigh temperature (UHT) granulites in the Eastern Ghats Province (EGP) have a complex P–T–t history. We review the P–T histories of UHT metamorphism in the EGP and use that as a framework for investigating the P–T–t history of Mg–Al‐rich granulites from Anakapalle, with the express purpose of trying to reconcile the down‐pressure‐dominated P–T path with other UHT localities in the EGP. Mafic granulite that is host to Mg–Al‐rich metasedimentary granulites at Anakapalle has a protolith age of c. 1,580 Ma. Mg–Al‐rich metasedimentary granulites within the mafic granulite at Anakapalle were metamorphosed at UHT conditions during tectonism at 960–875 Ma, meaning that the UHT metamorphism was not the result of contact metamorphism from emplacement of the host mafic rock. Reworking occurred during the Pan‐African (c. 600–500 Ma) event, and is interpreted to have produced hydrous assemblages that overprint the post‐peak high‐T retrograde assemblages. In contrast to rocks elsewhere in the EGP that developed post‐peak cordierite, the metasedimentary granulites at Anakapalle developed post‐peak, generation ‘2’ reaction products that are cordierite‐absent and nominally anhydrous. Therefore, rocks at Anakapalle offer the unique opportunity to quantify the pressure drop that occurred during so‐called M2 that affected the EGP. We argue that M2 is either a continuation of M1 and that the overall P–T path shape is a complex counter‐clockwise loop, or that M1 is an up‐temperature counter‐clockwise deviation superimposed on the M2 path. Therefore, rather than the rocks at Anakapalle having a metamorphic history that is apparently anomalous from the rest of the EGP, we interpret that other previously studied localities in the EGP record a different part of the same P–T path history as Anakapalle, but do not preserve a significant record of pressure decrease. This is due either to the inability of refractory rocks to extensively react to produce a rich mineralogical record of pressure decrease, or because the earlier high‐P part of the rocks history was erased by the M1 loop. Irrespective of the specific scenario, models for the tectonic evolution of the EGP must take the substantial pressure decrease during M2 into account, as it is probable the P–T record at Anakapalle is a reflection of tectonics affecting the entire province.  相似文献   
62.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   
63.
Magmatism,metamorphism and metasomatism in the Palaeoproterozoic‐Mesoproterozoic Mt Painter Inlier and overlying Neoproterozoic Adelaidean rocks in the northern Flinders Ranges (South Australia) have previously been interpreted as resulting from the ca 500 Ma Delamerian Orogeny. New Rb–Sr, Sm–Nd and U–Pb data, as well as structural analysis,indicate that the area also experienced a second thermal event in the Late Ordovician (ca 440 Ma). The Delamerian Orogeny resulted in large‐scale folding, prograde metamorphism and minor magmatic activity in the form of a small volume of pegmatites and leucogranites. The Late Ordovician event produced larger volumes of granite (the British Empire Granite in the core of the inlier) and these show Nd isotopic evidence for a mantle component. The high‐temperature stage of this magmatic‐hydrothermal event also gave rise to unusual diopside‐titanite veins and the primary uranium mineralisation in the basement, of which the remobilisation was younger than 3.5 Ma. It is possible that parts of the Mt Gee quartz‐hematite epithermal system developed during the waning stages of the Late Ordovician event. We suggest that the Ordovician hydrothermal system was also the cause of the commonly observed retrogression of Delamerian metamorphic minerals (cordierite, andalusite) and the widespread development of actinolite, scapolite, tremolite and magnetite in the cover sequences. Deformation during the Late Ordovician was brittle. The recognition of the Late Ordovician magmatic‐hydrothermal event in the Mt Painter Province might help to link the tectonic evolution of central Australia and the southeast Australian Lachlan Fold Belt.  相似文献   
64.
The Hill End Trough of central‐western New South Wales was an elongate deep marine basin that existed in the Lachlan Fold Belt from the early Late Silurian to late Early Devonian. It is represented by a regionally extensive, unfossiliferous sequence of interbedded turbidites and hemipelagites of substantially silicic volcanic derivation, which passes laterally into contemporaneous shallow‐water sedimentary rocks. The Turondale and Merrions Formations of the Lower Devonian Crudine Group are two prominent volcanogenic formations in the predominantly sedimentary trough sequence. They contain a range of primary and resedimented volcanic facies suitable for U–Pb dating. These include widespread subaqueous silicic lavas and/or lava cryptodomes, and thick sequences of crystal‐rich volcaniclastic sandstone emplaced by a succession of mass‐flows that were generated by interaction between contemporaneous subaerial pyroclastic flows and the sea. Ion microprobe dating of the two volcanogenic formations by means of the commonly used SL 13 zircon standard yields ages ranging between 411.3 ± 5.1 and 404.8 ± 4.8 Ma. Normalising the data against a different zircon standard (QGNG) yields preferred slightly older mean ages that range between 413.4 ± 6.6 and 407.1 ± 6.9 Ma. These ages broadly approximate the Early Devonian age that has been historically associated with the Crudine Group. However, the biostratigraphically inferred late Lochkovian ‐ early Emsian (mid‐Early Devonian) age for the Merrions Formation is inconsistent with the current Australian Phanerozoic Timescale, which assigns an age of 410 Ma to the Silurian‐Devonian boundary, and ages of 404.5 Ma and 395.5 Ma to the base and top of the Pragian, respectively. There is, however, good agreement if the new ages are compared with the most recently published revision of the Devonian time‐scale. This suggests that the Early Devonian stage boundaries of the Australian Phanerozoic Timescale need to be revised downward. The new ages for the Merrions Formation could also provide a time point on this time‐scale for the Pragian to early Emsian, for which no data are presently available.  相似文献   
65.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
66.
上扬子会泽地区早三叠世飞仙关组主要为河流相的紫红色砂岩,物源主要来自于西部和西北部。碎屑重矿物组合表明物源主要来自于岩浆岩,且重矿物中发现大量碎屑铬尖晶石和锆石。本文运用电子探针微区成分分析和碎屑锆石U-Pb测年方法,对上扬子早三叠世飞仙关组砂岩中铬尖晶石和碎屑锆石进行分析。铬尖晶石电子探针化学成分分析显示,其具有高铬、低Fe~(3+)和高TiO_2含量的特征,源岩分析指示这些铬尖晶石来源于与洋岛/板内、岛弧以及大火成岩省相关的火成岩。同时,碎屑锆石LA-ICP-MS U-Pb年龄测定表明,飞仙关组的物源主要来自于248~272Ma和715~997Ma的岩浆岩。铬尖晶石和碎屑锆石综合分析表明,248~272Ma的物源岩石具有大火成岩省玄武岩特征,主要为峨眉山玄武岩及同期基性侵入岩;715~997M的物源为洋岛/板内玄武岩类,主要为研究区周缘与新元古代苏雄组及其同期的岩浆岩;铬尖晶石指示的岛弧性质物源则可能源自1000~1100Ma的岩浆岩。同时,碎屑锆石还指示古元古代和早寒武世发育岩浆作用,且存在古老的新太古代结晶基底。这些资料为上扬子地区构造演化提供了沉积学的证据。  相似文献   
67.
A late-Variscan rhyodacite is exposed at the contact between the Ossa Morena Zone and the Central Iberian Zone of the Iberian Massif, Central Portugal. Dykes of rhyodacite intruded the Série Negra Unit and the Sardoal Complex that are part of the Cadomian basement. The igneous crystallization age of the rhyodacite (308 ± 1 Ma) was obtained on igneous monazite by the ID-TIMS U-Pb method. It is broadly coeval with the emplacement of late-Variscan granitoids during the last deformation phase of the Variscan Orogeny (ca. 304–314 Ma) and with the development of the large late-Variscan strike-slip shear zones (ca. 307 Ma). The rhyodacite samples are calc-alkaline, show identical composition and belong to the same magmatic sequence. The rhyodacite isotopic signatures (Sm-Nd and δ18O) are consistent with depleted-mantle juvenile sources and the contribution of the meta-igneous lower crust. The input of mantle juvenile sources is related to Variscan reactivation of lithospheric fractures. The inherited Neoproterozoic (ca. 619 Ma) and Mesoproterozoic (ca. 1054 Ma) zircon ages, are similar to those of the Central Iberian Zone. This suggests that lower crust of the Central Iberian Zone was involved in the magma generation of the rhyodacite. Coeval late-Variscan magmatic rocks display a larger contribution from ancient crustal components, which may be attributed to the smaller volume and faster cooling rate of the rhyodacite and consequent lower melting of the crust. Mixing of juvenile mantle-derived melts with melts from the lower continental crust was followed by fractional crystallization of garnet and amphibole that remained in the source. Fractional crystallization of plagioclase, biotite, quartz and zircon occurred in shallower magma chambers. Fractional crystallization of zircon was not significant.  相似文献   
68.
内蒙古西乌旗地区发育一套中酸性火山岩,空间展布特征显示其为大石寨组火山岩的西延部分。为查明该火山岩的形成时代及构造属性,对其进行了岩石学、年代学和岩石地球化学研究。研究结果表明该火山岩主要由安山岩及流纹岩组成。锆石LA-MC-ICP-MS U-Pb定年结果显示其喷发时代为275~311 Ma,属晚石炭世–早二叠世。岩石地球化学特征表明中性岩富钙贫镁,富集LREE及K、Rb、Ba,亏损Nb、Ta,具有弱Eu异常,安山质岩浆可能是由基性岩浆分离结晶形成的,但在形成过程中受到了陆壳物质混染。酸性岩贫钙镁,富硅碱,具有显著的Eu负异常,亏损Nb、Ta、Sr、P、Ti,反映岩石成因与中下地壳的熔融及其后期的分离作用有关。在构造判别图解中,中性岩具有板内玄武岩特征,而酸性岩具有A2型花岗岩特征。结合区域已发表资料推断,西乌旗大石寨组火山岩形成于造山后伸展环境,暗示古亚洲洋至少在早二叠世之前已经闭合。  相似文献   
69.
湘南荷花坪锡多金属矿床成矿年代研究   总被引:1,自引:1,他引:0  
荷花坪锡多金属矿床是本世纪初在南岭中段湘南地区新发现的一个大型矿床,区内的锡多金属矿化产在王仙岭岩体东南内、外接触带,已发现有Ⅰ、Ⅱ、Ⅲ和Ⅳ号4个主要锡多金属矿体。其中,Ⅰ、Ⅱ和Ⅳ号矿体由早期矽卡岩型和晚期蚀变碎裂岩型矿石组成,Ⅲ号矿体则由独立产出的蚀变碎裂岩型矿石组成,且包含有部分碎裂花岗斑岩。以往研究已对Ⅳ号矿体中的矽卡岩型矿石和Ⅲ号矿体中含矿斑岩脉分别采用辉钼矿Re-Os法和锆石SHRIMP U-Pb法进行了测年,获得的年龄分别为224.0±1.9Ma和142±2Ma。本文补充了晚期蚀变碎裂岩型矿石的~(40)Ar/~(39)Ar测年,结果显示,Ⅱ号矿体中蚀变碎裂岩型矿石白云母样品和石英样品的坪年龄分别为151.88±1.58Ma和155.39±7.04Ma;Ⅳ号矿体中蚀变碎裂岩型矿石石英样品的坪年龄为156.94±1.64Ma。结合前人研究资料综合分析,认为荷花坪矿区存在印支晚期(224Ma)、燕山早期(151~156Ma)和燕山晚期(142Ma)三期成矿作用,分别与区内印支期中粗粒含电气石黑云母花岗岩、燕山早期中粗粒黑云母花岗岩和燕山晚期花岗斑岩脉有关,不同期成岩、成矿作用的构造环境均为岩石圈的拉张伸展。湘南地区印支期(205~224Ma)基性岩浆活动及荷花坪矿床印支期成岩、成矿过程中均有幔源物质的参与,它们共同指示南岭地区中生代构造体制的转换或岩石圈伸展减薄可能始于印支主期(230~244Ma)之后的224Ma左右,即晚三叠世。  相似文献   
70.
笔者采用Ar-Ar测年技术,获得华阳川铀多金属矿床碳酸岩中黑云母~(40)Ar/~(39)Ar坪年龄132.58±0.70 Ma,等时线年龄133.01±0.74 Ma,含黑云母闪石硫化物伟晶岩中黑云母的~(40)Ar/~(39)Ar坪年龄93.72±2.38 Ma,等时线年龄91.49±1.97 Ma。镜下特征显示,铌钛铀矿的形成晚于碳酸岩中的黑云母及含黑云母闪石硫化物伟晶岩中的黑云母。因此,铌钛铀矿的形成时间应晚于93.72±2.38 Ma。这表明成矿带内除了已知存在三叠纪碳酸岩型Mo-Pb矿和白垩纪斑岩型Mo矿的成矿过程之外,还存在早白垩世之后的岩浆热液型U-Nb-Ti成矿过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号